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Functional group transformations of 7-silabenzonorborna-
diene derivatives have been investigated. The 7-mesityl-7-sila-
norbornadiene 1 was prepared and converted into the 7-chloro
derivative 5. Reductive lithiation of 5with lithium naphthalenide
afforded the silyllithium 6, which reacted with Me3SiCl and
MeI. The reactions of 5 with n-BuLi and PhNHLi gave the 7-
butyl derivative 9 and the 7-amino derivative 10, respectively.
Each stereochemistry during these transformations was deter-
mined by X-ray crystallographic analysis.

The 7-silanorbornadienes have been attractive species since
they show unique reactivity attributed to their heavily strained
skeletons.1 Thermolysis or photolysis of the 7-silanorborna-
dienes may produce divalent silylene species with the elimina-
tion of arenes, the former of which undergoes reactions with di-
enes, alkynes, hydrosilanes, and alcohols.2 Thus the 7-silanor-
bornadienes are potential precursors of a variety of silicon
compounds, and the introduction of functional groups on the
bridging silicons will increase their synthetic utility. Functional
group transformations of the 7-silanorbornadienes, however,
have been scarcely investigated. We report here the preparations
and stereochemical aspects of silicon-functionalized 7-silaben-
zonorbornadienes, starting from the 2,3-benzo-1,4,5,6-tetra-
phenyl-7-mesityl-7-silanorbornadiene (1).

A parent compound, the 7-hydro derivative 1, was prepared
in a manner similar to the reported procedure,3 as shown in
Scheme 1 [Mes = Mesityl (2,4,6-trimethylphenyl)]. The reac-
tion of 1,4-dilithiotetraphenylbutadiene 2 with trichlorosilane
gave the 1H-1-chloro-1-silacyclopentadiene 3.3a The crude 3
was subsequently treated with mesitylmagnesium bromide to
afford the 1H-1-mesityl-1-silacyclopentadiene 4 in 59% yield.3b

The ½4þ 2� cycloaddition between 4 and benzyne prepared in
situ gave the silanorbornadiene 1 as a diastereoisomer in 78%

yield.3c,4 The X-ray crystallographic analysis of 1 revealed that
the hydrogen at the silicon is syn with respect to the annulated
benzene.4 The steric bulkiness of the mesityl group in 1 deter-
mines the stereochemistry during the ½4þ 2� cycloaddition.

The chlorination of 1 with refluxing carbon tetrachloride in
the presence of palladium dichloride (30mol%) successfully af-
forded 5 in 90% yield (Eq 1).5,6 There have been very few exam-
ples of the 7-chloro-7-silanorbornadienes, all of which were pre-
pared by the ½4þ 2� cycloaddition.1c The stereochemistry of 5
was confirmed to be syn by an X-ray crystallographic analysis.6

This proves that the chlorination reaction proceeds with reten-
tion of its configuration at the silicon. The observed stereochem-
istry is consistent with the trend that reactions of organosilanes
involving the intermediate silyl radicals proceed with the pre-
dominant retention of the configuration at the silicon.7
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The lithiation of 5 was also successful, giving a nucleophilic
silanorbornadiene species. The exposure of 5 to lithium naphtha-
lenide (4 molar amounts) in THF–benzene at�78 �C for 4 h pro-
duced the corresponding silyllithium 6 (Eq 2).8,9 Excess amount
of lithium naphthalenide was required to consume 5 completely.
The silyllithium 6 reacted with methyl iodide and chlorotri-
methylsilane to form the 7-methyl derivative 7 in 45% yield
and the 7-trimethylsilyl derivative 8 in 52% yield, respective-
ly.10,11 This is the first example of silicon-lithiated silanorborna-
dienes whereas there have been a few examples of those having a
transition metal fragment on the silicon atom.12 The syn stereo-
chemistry of 8 was determined by X-ray crystallographic analy-
sis.11,13 Thus the formation and reaction of 6 undergo the net re-
tention of the configuration at the silicon. This is in good agree-
ment with the known aspects that the reductive lithiation of
chlorosilanes and subsequent reactions with the electrophiles
proceed with the predominant retention of the configuration at
the silicon during each step.14

Si

Ph

Ph
Ph

Ph

Li Si

Ph

Ph
Ph

Ph

E

(a) Lithium naphthalenide (x 4) / THF–benzene / –78 °C, 4 h.
(b) MeI or Me3SiCl / –78 °C to room temp.

a)

Mes

b)

Mes

7: E = Me
8: E = Me3Si

45%
52%

6

5 (2)

The nucleophilic substitution reactions of 5 were also exam-
ined. The treatment of 5 with butyllithium and lithium phenyl-
amide in THF–benzene gave the 7-butyl derivative 9 and the
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7-amino derivative 10 in 53% yield and 52% yield, respectively
(Eq 3).15,16 The X-ray crystallographic analysis of 10 displayed
its syn stereochemistry,13,16 indicating the retention of configura-
tion at the silicon during the amination reaction. It is noted that
although the nucleophilic displacements of chlorosilanes mainly
undergo inversion at the silicon, the stereochemistry tends to-
wards retention when the silicon is included in a strained ring.7a
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In summary, the Si–H functionality in 1 was converted into
the Si–Cl functionality (5) and then the Si–Si (8) and Si–N (10)
functionalities. These transformations proceed with predominant
retention of configuration at the bridging silicons due to the rigid
skeletons. The nucleophilic and electrophilic silanorbornadienes
prepared here will serve as versatile silicon reagents.
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